Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(1): 2, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070010

RESUMO

The recent global outbreak of mpox, caused by monkeypox virus (MPV) emerged in Europe in 2022 and rapidly spread to over 40 countries. The Americas are currently facing the highest impact, reporting over 50,000 cases by early 2023. In this study, we analyzed 880 MPV isolates worldwide to gain insights into the evolutionary patterns and initial introduction events of the virus in Mexico. We found that MPV entered Mexico on multiple occasions, from the United Kingdom, Portugal, and Canada, and subsequently spread locally in different regions of Mexico. Additionally, we show that MPV has an open pangenome, highlighting the role of gene turnover in shaping its genomic diversity, rather than single-nucleotide polymorphisms (SNPs), which do not contribute significantly to genome diversity. Although the genome contains multiple SNPs in coding regions, these remain under purifying selection, suggesting their evolutionary conservation. One notable exception is amino acid position 63 of the protein encoded by the Cop-A4L gene, which is intricately related to viral maturity, which we found to be under strong positive selection. Ancestral state reconstruction indicated that the ancestral state at position 63 corresponds to the amino acid valine, which is present only in isolates of clade I. However, the isolates from the current outbreak contained threonine at position 63. Our findings contribute new information about the evolution of monkeypox virus.


Assuntos
Mpox , Humanos , Monkeypox virus/genética , México/epidemiologia , Filogenia , Aminoácidos/genética , Surtos de Doenças
2.
Virus Evol ; 8(2): veac109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582501

RESUMO

A new variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), named Omicron (Pango lineage designation B.1.1.529), was first reported to the World Health Organization by South African health authorities on 24 November 2021. The Omicron variant possesses numerous mutations associated with increased transmissibility and immune escape properties. In November 2021, Mexican authorities reported Omicron's presence in the country. In this study, we infer the first introductory events of Omicron and the impact that human mobility has had on the spread of the virus. We also evaluated the adaptive evolutionary processes in Mexican SARS-CoV-2 genomes during the first month of the circulation of Omicron. We inferred 160 introduction events of Omicron in Mexico since its first detection in South Africa; subsequently, after the first introductions there was an evident increase in the prevalence of SARS-CoV-2 during January. This higher prevalence of the novel variant resulted in a peak of reported cases; on average 6 weeks after, a higher mobility trend was reported. During the peak of cases in the country from January to February 2022, the Omicron BA.1.1 sub-lineage dominated, followed by the BA.1 and BA.15 sub-lineages. Additionally, we identified the presence of diversifying natural selection in the genomes of Omicron and found six non-synonymous mutations in the receptor binding domain of the spike protein, all of them related to evasion of the immune response. In contrast, the other proteins in the genome are highly conserved; however, we identified homoplasic mutations in non-structural proteins, indicating a parallel evolution.

3.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389245

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/genética
4.
Mol Genet Genomics ; 296(6): 1263-1278, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34453201

RESUMO

Nascent ribosomal 60S subunits undergo the last maturation steps in the cytoplasm. The last one involves removing the anti-association factor eIF6 from the 60S ribosomal surface by the joint action of the Elongation Factor-like 1 (EFL1) GTPase and the SBDS protein. Herein, we studied the evolutionary relationship of the EFL1 and EF-2 protein families and the functional conservation within EFL1 orthologues. Phylogenetic analysis demonstrated that the EFL1 proteins are exclusive of eukaryotes and share an evolutionary origin with the EF-2 and EF-G protein families. EFL1 proteins originated by gene duplication from the EF-2 proteins and specialized in ribosome maturation while the latter retained their function in translation. Some organisms have more than one EFL1 protein resulting from alternative splicing, while others are encoded in different genes originated by gene duplication. However, the function of these alternative EFL1 proteins is still unknown. We performed GTPase activity and complementation assays to study the functional conservation of EFL1 homologs alone and together with their SBDS counterparts. None of the orthologues or cross-species combinations could replace the function of the corresponding yeast EFL1•SBDS binomial. The complementation of SBDS interspecies chimeras indicates that domain 2 is vital for its function together with EFL1 and the 60S subunit. The results suggest a functional species-specificity and possible co-evolution between EFL1, SBDS, and the 60S ribosomal subunit. These findings set the basis for further studies directed to understand the molecular evolution of these proteins and their impact on ribosome biogenesis and disease.


Assuntos
Fator 2 de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Proteínas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos/genética , Eucariotos/genética , Evolução Molecular , Duplicação Gênica/genética , Humanos , Fator 2 de Elongação de Peptídeos/genética , Filogenia , Alinhamento de Sequência
5.
J Biol Chem ; 293(26): 9945-9957, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29743237

RESUMO

The isozymes of photosynthetic phosphoenolpyruvate carboxylase from C4 plants (PEPC-C4) play a critical role in their atmospheric CO2 assimilation and productivity. They are allosterically activated by phosphorylated trioses or hexoses, such as d-glucose 6-phosphate, and inhibited by l-malate or l-aspartate. Additionally, PEPC-C4 isozymes from grasses are activated by glycine, serine, or alanine, but the allosteric site for these compounds remains unknown. Here, we report a new crystal structure of the isozyme from Zea mays (ZmPEPC-C4) with glycine bound at the monomer-monomer interfaces of the two dimers of the tetramer, making interactions with residues of both monomers. This binding site is close to, but different from, the one proposed to bind glucose 6-phosphate. Docking experiments indicated that d/l-serine or d/l-alanine could also bind to this site, which does not exist in the PEPC-C4 isozyme from the eudicot plant Flaveria, mainly because of a lysyl residue at the equivalent position of Ser-100 in ZmPEPC-C4 Accordingly, the ZmPEPC-C4 S100K mutant is not activated by glycine, serine, or alanine. Amino acid sequence alignments showed that PEPC-C4 isozymes from the monocot family Poaceae have either serine or glycine at this position, whereas those from Cyperaceae and eudicot families have lysine. The size and charge of the residue equivalent to Ser-100 are not only crucial for the activation of PEPC-C4 isozymes by neutral amino acids but also affect their affinity for the substrate phosphoenolpyruvate and their allosteric regulation by glucose 6-phosphate and malate, accounting for the reported kinetic differences between PEPC-C4 isozymes from monocot and eudicot plants.


Assuntos
Sítio Alostérico , Aminoácidos Neutros/metabolismo , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato Carboxilase/metabolismo , Serina/metabolismo , Zea mays/enzimologia , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
6.
Dev Growth Differ ; 60(2): 121-129, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29441522

RESUMO

Myxococcus xanthus is a myxobacterium that exhibits aggregation and cellular differentiation during the formation of fruiting bodies. Therefore, it has become a valuable model system to study the transition to multicellularity via cell aggregation. Although there is a vast set of experimental information for the development on M. xanthus, the dynamics behind cell-fate determination in this organism's development remain unclear. We integrate the currently available evidence in a mathematical network model that allows to test the set of molecular elements and regulatory interactions that are sufficient to account for the specification of the cell types that are observed in fruiting body formation. Besides providing a dynamic mechanism for cell-fate determination in the transition to multicellular aggregates of M. xanthus, this model enables the postulation of specific mechanisms behind some experimental observations for which no explanations have been provided, as well as new regulatory interactions that can be experimentally tested. Finally, this model constitutes a formal basis on which the continuously emerging data for this system can be integrated and interpreted.


Assuntos
Modelos Biológicos , Myxococcus xanthus/citologia , Myxococcus xanthus/crescimento & desenvolvimento , Movimento
7.
J Exp Zool B Mol Dev Evol ; 328(1-2): 165-178, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28217903

RESUMO

The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Myxococcales/citologia , Myxococcales/genética
8.
BMC Plant Biol ; 14: 147, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24886483

RESUMO

BACKGROUND: NaTrxh, a thioredoxin type h, shows differential expression between self-incompatible and self-compatible Nicotiana species. NaTrxh interacts in vitro with S-RNase and co-localizes with it in the extracellular matrix of the stylar transmitting tissue. NaTrxh contains N- and C-terminal extensions, a feature shared by thioredoxin h proteins of subgroup 2. To ascertain the function of these extensions in NaTrxh secretion and protein-protein interaction, we performed a deletion analysis on NaTrxh and fused the resulting variants to GFP. RESULTS: We found an internal domain in the N-terminal extension, called Nß, that is essential for NaTrxh secretion but is not hydrophobic, a canonical feature of a signal peptide. The lack of hydrophobicity as well as the location of the secretion signal within the NaTrxh primary structure, suggest an unorthodox secretion route for NaTrxh. Notably, we found that the fusion protein NaTrxh-GFP(KDEL) is retained in the endoplasmic reticulum and that treatment of NaTrxh-GFP-expressing cells with Brefeldin A leads to its retention in the Golgi, which indicates that NaTrxh uses, to some extent, the endoplasmic reticulum and Golgi apparatus for secretion. Furthermore, we found that Nß contributes to NaTrxh tertiary structure stabilization and that the C-terminus functions in the protein-protein interaction with S-RNase. CONCLUSIONS: The extensions contained in NaTrxh sequence have specific functions on the protein. While the C-terminus directly participates in protein-protein interaction, particularly on its interaction with S-RNase in vitro; the N-terminal extension contains two structurally different motifs: Nα and Nß. Nß, the inner domain (Ala-17 to Pro-27), is essential and enough to target NaTrxh towards the apoplast. Interestingly, when it was fused to GFP, this protein was also found in the cell wall of the onion cells. Although the biochemical features of the N-terminus suggested a non-classical secretion pathway, our results provided evidence that NaTrxh at least uses the endoplasmic reticulum, Golgi apparatus and also vesicles for secretion. Therefore, the Nß domain sequence is suggested to be a novel signal peptide.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ribonucleases/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Motivos de Aminoácidos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Via Secretória , Relação Estrutura-Atividade , Nicotiana/ultraestrutura
9.
ISME J ; 8(5): 991-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24285361

RESUMO

A symbiotic association occurs in 'Chlorochromatium aggregatum', a phototrophic consortium integrated by two species of phylogenetically distant bacteria composed by the green-sulfur Chlorobium chlorochromatii CaD3 epibiont that surrounds a central ß-proteobacterium. The non-motile chlorobia can perform nitrogen and carbon fixation, using sulfide as electron donors for anoxygenic photosynthesis. The consortium can move due to the flagella present in the central ß-protobacterium. Although Chl. chlorochromatii CaD3 is never found as free-living bacteria in nature, previous transcriptomic and proteomic studies have revealed that there are differential transcription patterns between the symbiotic and free-living status of Chl. chlorocromatii CaD3 when grown in laboratory conditions. The differences occur mainly in genes encoding the enzymatic reactions involved in nitrogen and amino acid metabolism. We performed a metabolic reconstruction of Chl. chlorochromatii CaD3 and an in silico analysis of its amino acid metabolism using an elementary flux modes approach (EFM). Our study suggests that in symbiosis, Chl. chlorochromatii CaD3 is under limited nitrogen conditions where the GS/GOGAT (glutamine synthetase/glutamate synthetase) pathway is actively assimilating ammonia obtained via N2 fixation. In contrast, when free-living, Chl. chlorochromatii CaD3 is in a condition of nitrogen excess and ammonia is assimilated by the alanine dehydrogenase (AlaDH) pathway. We postulate that 'Chlorochromatium aggregatum' originated from a parasitic interaction where the N2 fixation capacity of the chlorobia would be enhanced by injection of 2-oxoglutarate from the ß-proteobacterium via the periplasm. This consortium would have the advantage of motility, which is fundamental to a phototrophic bacterium, and the syntrophy of nitrogen and carbon sources.


Assuntos
Chlorobium/fisiologia , Metaboloma , Simbiose , Alanina Desidrogenase/metabolismo , Aminoácidos/metabolismo , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Ácidos Cetoglutáricos/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio
10.
Plant Physiol ; 158(4): 1570-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345508

RESUMO

Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.


Assuntos
Aminoácidos/metabolismo , Betaína-Aldeído Desidrogenase/metabolismo , Betaína/análogos & derivados , Spinacia oleracea/enzimologia , Aminoácidos Aromáticos/metabolismo , Betaína/química , Betaína/metabolismo , Betaína-Aldeído Desidrogenase/química , Sítios de Ligação , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Physiol Plant ; 143(3): 297-308, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21707637

RESUMO

Cyclin proteins, associated to cyclin-dependent kinases (CDKs), play fundamental roles in cell cycle control as they constitute a very important driving force to allow cell cycle progression. D-type cyclins (CycDs) are important both for interpreting external mitogenic signals and in the control of the G1 phase. The maize (Zea mays) genome appears to contain at least 17 different CycD genes, and they fall into the subgroups previously described for other plants. Maize CycDs have been named according to identity percentages of the corresponding orthologs in rice and Arabidopsis. In silico analysis confirmed the presence of characteristic cyclin domains in each maize CycD gene and showed that their genomic organization is similar to their orthologs in rice and Arabidopsis. The expression of maize CycD genes was followed in seeds, during germination in the presence/absence of exogenously added hormones, and also in different plantlet tissues (mesocotyl, root tips and first leaf). Most cyclins were expressed in germinating seeds and at least in one of the plantlet tissues tested; almost all of the detected cyclins show an accumulating pattern of mRNA along germination (0-24 h) and higher levels in root tissue. Interestingly, some cyclins show high levels in non-proliferating tissues as leaf. Addition of auxins or cytokinins does not seem to importantly modify transcript levels; on the other hand, addition of abscisic acid repressed the expression of several cyclins. The role of each CycD during germination and plant growth and its interaction with other cell cycle proteins becomes a topic of the highest interest.


Assuntos
Ciclina D/genética , Ciclina D/metabolismo , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Oryza/genética , Oryza/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Análise de Sequência de Proteína , Zea mays/crescimento & desenvolvimento
12.
Int J Evol Biol ; 2011: 781642, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21461370

RESUMO

The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

13.
PLoS One ; 5(9): e12483, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20830209

RESUMO

BACKGROUND: Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. PRINCIPAL FINDINGS: The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449-460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. CONCLUSION: Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone.


Assuntos
Proteínas/química , Alinhamento de Sequência/métodos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência/instrumentação , Software
14.
Physiol Plant ; 132(3): 272-82, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18275459

RESUMO

Type A response regulators are a family of genes in Arabidopsis thaliana involved primarily in cytokinin signal transduction. A member of this family was isolated from a cDNA library constructed from bean plants (Phaseolus vulgaris) grown under conditions of phosphate starvation. The complete cDNA sequence showed the presence of the DDK domain, which is the hallmark of the response regulator family. Expression of the P. vulgaris response regulator 1 (PvRR1) showed clear regulation based on phosphate availability because transcript levels increased during phosphate starvation and returned to basal levels after resupplementation with phosphorus. Nitrogen and potassium starvation also upregulated PvRR1, indicating that cross talk with other nutrient signaling pathways might occur. Addition of cytokinins to plants growing under phosphate-sufficient conditions stimulated PvRR1 transcript levels both in detached leaves and in roots. However, cytokinins strongly inhibited PvRR1 expression in phosphate-starved plants after 24 h of incubation. At the protein level, subcellular localization of PvRR1 indicated that it is a nuclear protein and that phosphate starvation modified protein levels but not the localization.


Assuntos
Phaseolus/genética , Phaseolus/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Citocininas/metabolismo , Primers do DNA/genética , DNA Complementar/genética , DNA de Plantas/genética , Genes de Plantas , Dados de Sequência Molecular , Família Multigênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
15.
Mol Biosyst ; 3(11): 794-802, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17940662

RESUMO

TOR (Target of rapamycin) kinase is a central component of a signal transduction pathway that regulates cellular growth in response to nutrients, mitogens and growth factors in eukaryotes. Knowledge of the TOR pathway in plants is scarce, and reports in agronomical relevant plants are lacking. Previous studies indicate that Arabidopsis thaliana TOR (AtTOR) activity is resistant to rapamycin whereas maize TOR (ZmTOR) is not, suggesting that plants might have different regulation mechanisms for this signal transduction pathway. In the present work maize ZmTOR cDNA was identified and its expression regulation was analyzed during germination on different tissues at various stages of differentiation and by the main ZmTOR regulators. Our results show that ZmTOR contains all functional domains characteristic of metazoan TOR kinase. ZmTOR expression is highly regulated during germination, a critical plant development period, but not on other tissues of contrasting physiological characteristics. Bioinformatic analyses indicated that maize FKBP12 and rapamycin form a functional structure capable of targeting the ZmTOR protein, similar to other non-plant eukaryotes, further supporting its regulation by rapamycin (in contrast with the rapamycin insensitivity of Arabidopsis thaliana) and the conservation of rapamycin regulation through plant evolution.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Zea mays/genética , Sequência de Aminoácidos , Western Blotting , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Insulina/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ácidos Fosfatídicos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Sirolimo/metabolismo , Sirolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
16.
Mol Biol Evol ; 24(2): 465-81, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17135333

RESUMO

B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus propose a mechanism of functional diversification and persistence of gene duplicates by the appearance of novel multimerization capabilities after duplications. Multimer formation in different combinations of regulatory proteins can be a mechanistic basis for the origin of novel regulatory functions and a gene regulatory mechanism for the appearance of morphological innovations.


Assuntos
Flores/crescimento & desenvolvimento , Duplicação Gênica , Genes Homeobox , Proteínas de Domínio MADS/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Evolução Biológica , Evolução Molecular , Genes de Plantas , Funções Verossimilhança , Proteínas de Domínio MADS/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
17.
Proc Natl Acad Sci U S A ; 100(23): 13407-12, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14597714

RESUMO

Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.


Assuntos
Arabidopsis/genética , Evolução Molecular , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/genética , Teorema de Bayes , Cromossomos , DNA Complementar/metabolismo , Família Multigênica , Fenótipo , Filogenia , Estrutura Terciária de Proteína , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...